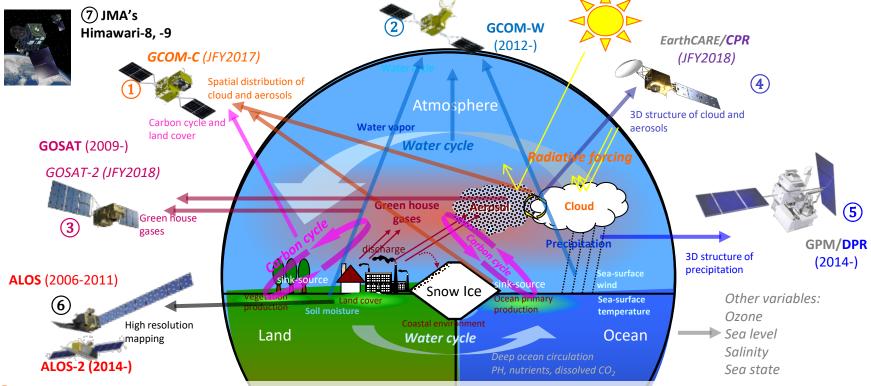


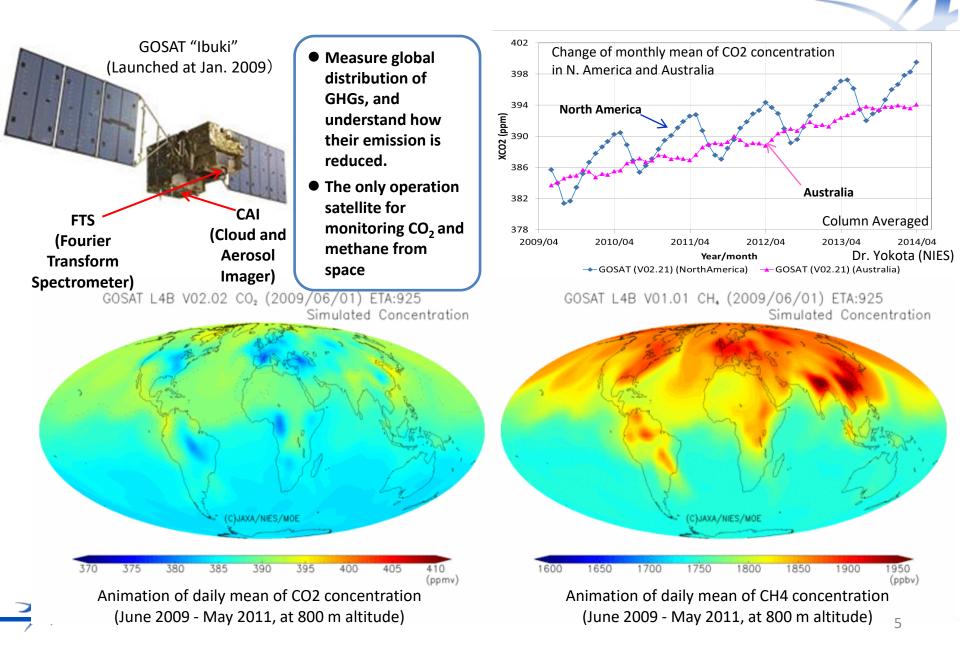
Satellite activities at JAXA

Misako Kachi EORC, Space Technology Directorate I Japan Aerospace Exploration Agency (JAXA)


May 16, 2017 1st GODEX Meeting@Lannion, France

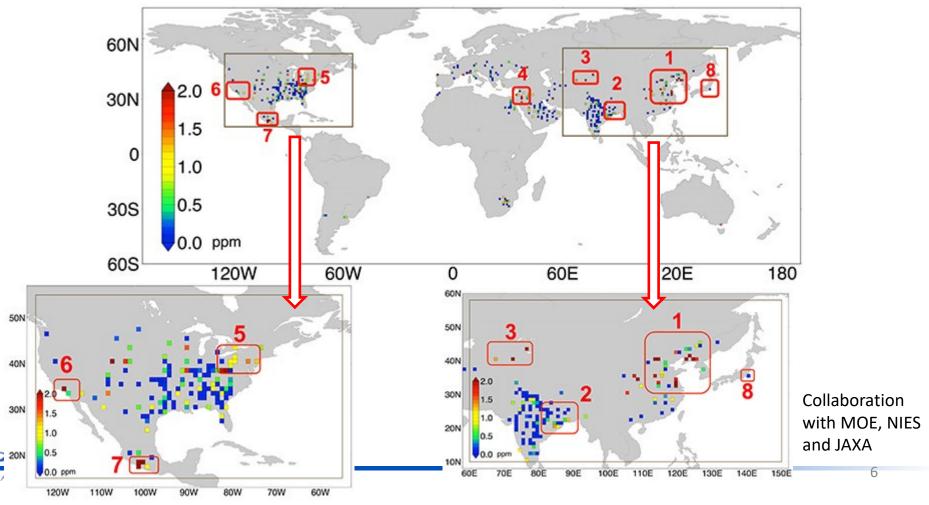
JAXA Earth Observation Program

There are no sensors that observes EVERYTHING on the earth. Each sensor has its own strength \rightarrow observe "parts" of earth's phenomenon taking the advantage of each sensor \rightarrow the goal is to combine the sensors' data to capture the full image of the phenomenon


- **(1)GCOM-C**: Long-term observation of the horizontal distribution of aerosol, cloud, and ecosystem CO₂ absorption and discharge
- **2**GCOM-W: Long-term observation of water-cycle such as the snow/ice coverage, water vapor, and SST
- **3**GOSAT: Observation of distribution and flux of the atmospheric greenhouse gases, CO₂ and CH₄
- **(4)**EarthCARE/CPR: Observation of vertical structure of clouds and aerosols
- **(5)** GPM/DPR: Accurate and frequent observation of precipitation with active and passive sensors
- 6 ALOS, -2 Fine resolution mapping by SAR instruments
- **(7)Himawari-8**: Synergies to enhance values of JAXA EO Satellites

Satellites in Orbit

Greenhouse gases Observing SATellite (GOSAT "IBUKI")


Size	Main body	Main body 3.7m(H) x1.8m(W) x 2. attachmen			
	Wing Span		13.7 m		
Mass	Total		1,750 kg		
Power	Total	3.8KW(EOL)			
Design Life	5 years				
Orbit	Sun Synchronous Orbit				
	Local time		13:00±0:15 (February 2015 - January 2016) 12:46-12:52		
	Altitude, inclination, period, revisit		666±0.6 km, 98.0±0.1 deg, 98.1 min, 3 days (44 rotations)		
Launch	Vehicle, date		H-IIA, Jan. 23, 2009		

CO2 and CH4 Observation by GOSAT

Estimation of Anthropogenic CO₂

- Areas where anthropogenic CO₂ was observed at high concentration (average from June 2009 to December 2014) by observed GOSAT. The color indicates the anthropogenic CO2.
- The concentration of anthropogenic CO2 is high in areas such as North America, Europe, Middle East, India, China where population is dense or industrial activities are promoted including thermal electric power generation and oil and gas field development.

Global Change Observation Mission – Water (GCOM-W "SHIZUKU")

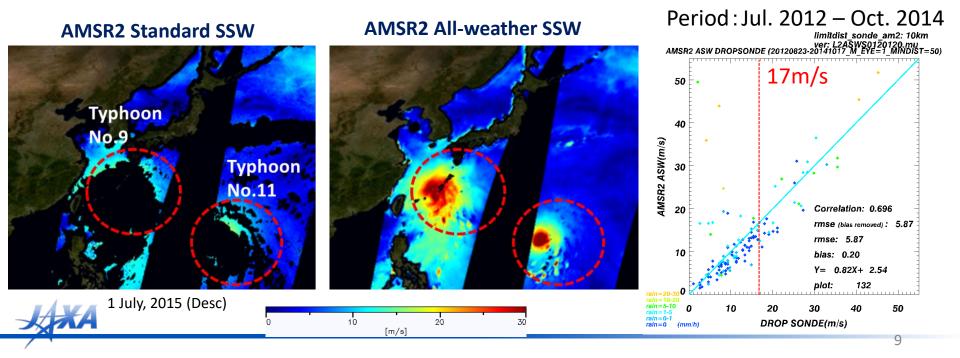
■ GCOM-W "SHIZUKU": Medium size satellite

- Weight: Approx. 2 tons
- Size: 5.1m(L) × 17.5m(W) × 3.4m(H)
- Power generation: Approx. 4000W

Mission instrument: AMSR2

- Advanced Microwave Scanning Radiometer 2 (AMSR2)
- Observe weak microwave from the ground, sea surface, atmosphere
- Follow-on instrument of AMSR-E loaded on Aqua operated by NASA
- Improvement from AMSR-E in accuracy and spatial resolution

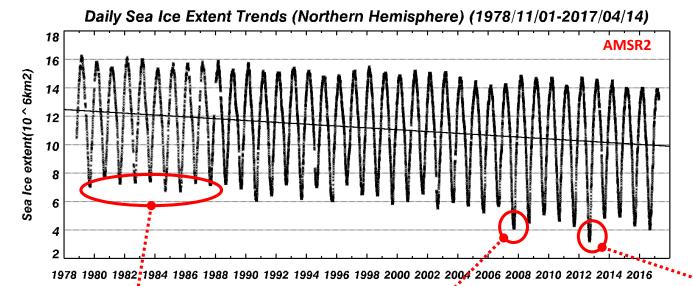
AMSR2 Standard/Research Products

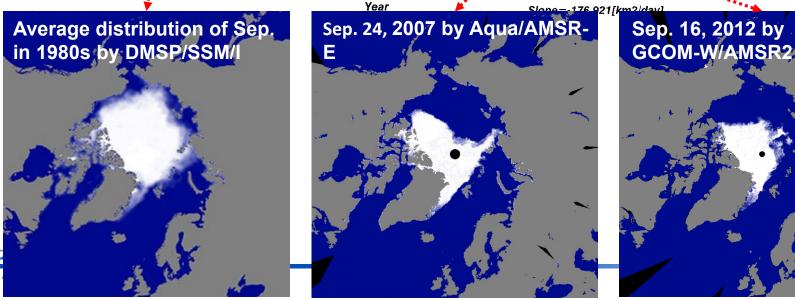

Standard Products

Research Products

	Product	Resolution	Accuracy	Products	Resolution	Accuracy	
	Brightness Temperature	5-50 km	< 1.4 K	All-weather sea surface wind speed	60 km	4 m/s	
	Total Precipitable	15 km	GPS:1.5 kg/m ²	High-resolution (10-GHz) SST	30 km	0.6 ºC	
	Water			Soil moisture and			
	Cloud Liquid Water	15 km	0.04 kg/m ²	vegetation water content based on the land data assimilation	25 km	Not evaluated yet	
G E O	Precipitation	15 km	Ocean 48% Land 86%	Land surface temperature	15 km	4°C (mixed vegetation)	
	Sea Surface Temperature	50 km	0.5 ºC Zonal RMSE 0.2 ºC	Vegetation water content	10 km	± 1 kg/m ² (obs. site at Australia)	
	Sea Surface Wind Speed	15 km	1.0 m/s	High resolution sea ice concentration	5 km	± 17 %	
	Sea Ice	15 km	9 %	Thin ice detection	15 km	Not evaluated yet	
	Concentration			Sea ice moving vector	50 km	Not evaluated yet	
	Snow Depth	30 km	18 cm				
	Soil Moisture Content	50 km	4 %	Released to public			

All-weather Sea Surface Wind Speed


- Use 6-GHz/10-GHz channels to avoid influence of rainfall (Shibata, 2006), corresponding to wind speed at best track released by JMA and NHC.
 - RMSE: 5.87 m/s for all wind range
 - RMSE: 4.18 m/s for strong (> 17 m/s) wind range
- AMSR2 all-weather SSW Released to public in October 2015 at http://suzaku.eorc.jaxa.jp/GCOM_W/research/terms.html
- Used in JMA's operational typhoon analysis, and images are distributed to Asian meteorological agencies from JMA.


Long-term Monitoring of Sea Ice

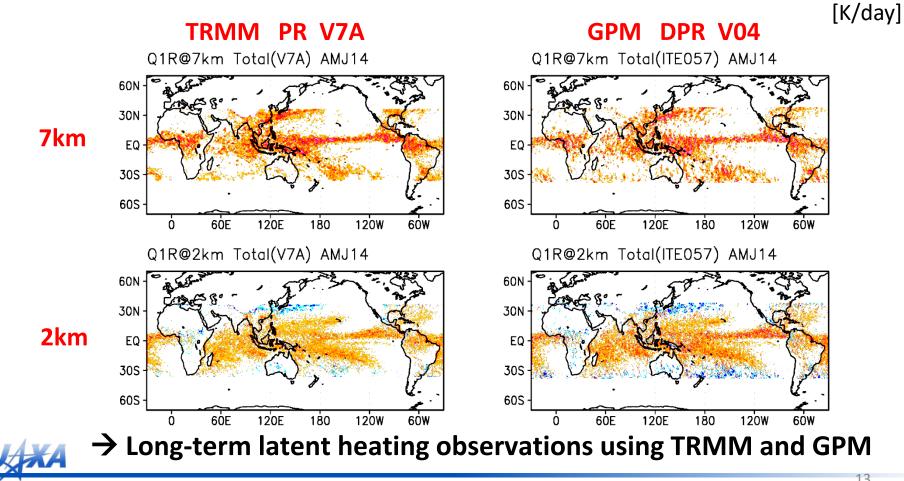
http://kuroshio.eorc.jaxa.jp/JASMES/climate/index.html

Daily sea ice concentration dataset by SMMR, SSM/I, AMSR-E, Windsat and AMSR2.

AMSR2 captured the smallest sea ice extent in the record in 2012, and AMSR-E captured the 2nd smallest in 2007.

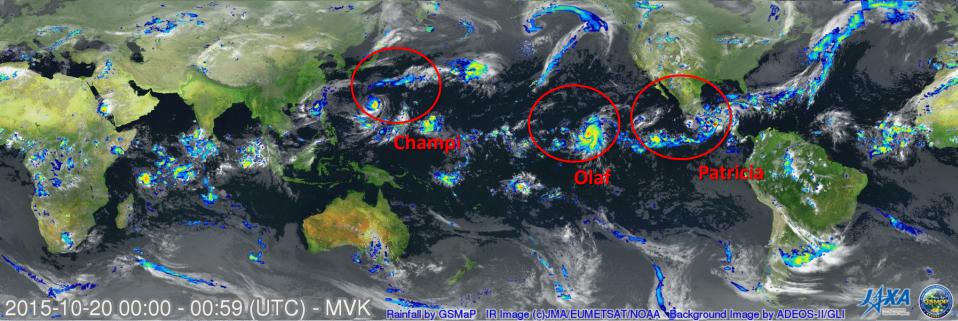
AMSR2 follow-on mission

- Continuity of AMSR series record is the highest priority of users
 - ✓ In the next May, AMSR2 will reach design life of 5 years. Observation operation will be continued as long as it can survive.
 - ✓ There is a high risk of gap between AMSR2 and the follow-on, even if development of AMSR2 follow-on starts from JFY2018.
 - ✓ Small budget is accepted to conduct research on hosted payload capability of AMSR2 follow-on onto GOSAT-3 in JFY2017 in corresponding to revision of the roadmap for the Basic Plan on Space Policy. JAXA discussed with scientists on scientific synergies between two missions.


JFY	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
GCOM-W / AMSR2	Launch 스									9.5 year ↓		%Inter-
AMONE		Nomina	l Operatio	on (5 year	s)			Exte	nded Ope	eration		(1 year)
AMSR2 follow-on					Prepa Stu	ration dy	Design			Space		ce Operation
							<		ration/Test Vears		۲ >	
							•		years			11

Global Precipitation Measurement Mission (GPM)

GPM is US-Japan space cooperation for monitoring global precipitation. GPM core satellite was launched on February 28, 2014.


The first GPM latent heating product

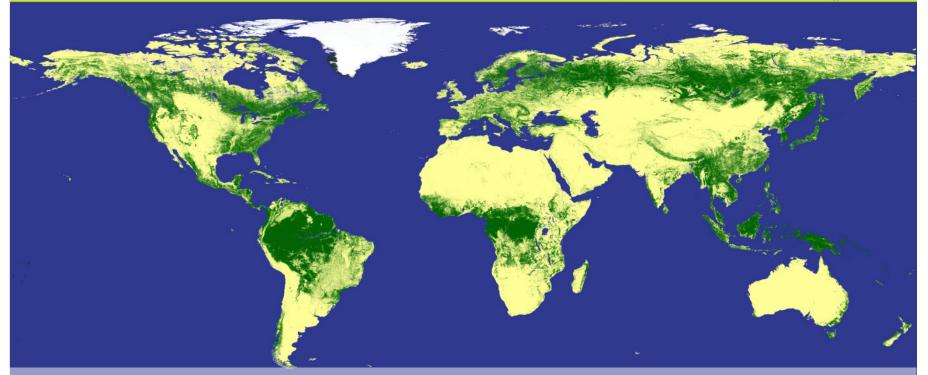
Comparison of latent heating products between TRMM/PR and GPM/DPR by the SLH algorithm (Shige et al. 2004) during Apr., May, Jun. 2014.

Global Satellite Mapping of Precipitation (GSMaP)

1-hr Animation during Oct. 20-24, 2015 (Typhoon Champi, Hurricanes Olaf & Patricia)

- GSMaP is a blended Microwave-IR product and has been developed in Japan for the GPM mission (Core and Constellations).
 - Processing and distributing global rainfall in near real time basis (4-h latency) by merging multi-satellite data.
 - Hourly product in 0.1x0.1deg. lat/lon grid.
- GSMaP Realtime version (GSMaP_NOW) over Himawari area (0-h latency)
 - Extension to EUMETSAT/Meteosat area is in preparation.

http://sharaku.eorc.jaxa.jp/GSMaP [http://sharaku.eorc.jaxa.jp/GSMaP_NOW

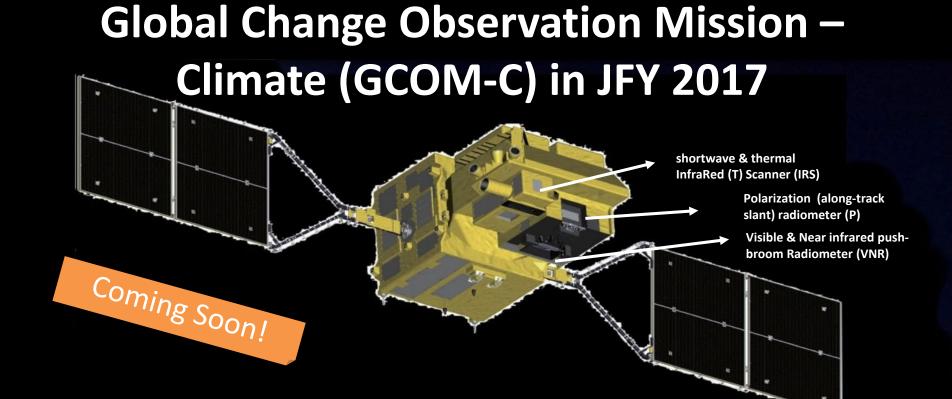

Advanced Land Observing Satellite-2 (ALOS-2 or "DAICHI")

Carries L-band Synthetic Aperture Radar (PALSAR-2)

	and a second s		
Application	Disaster, Land, Agriclture, Natural Resources, Sea Ice & Maritime Safety		
L-band SAR (PALSAR-2)	Stripmap: 3 to 10m res., 50 to 70 km swath ScanSAR: 100m res., 350km/490km swath Spotlight: 1 × 3m res., 25km swath		
Orbit	Sun-synchronous orbit Altitude: 628 km Local sun time : $12:00 +/- 15$ min Revisit: 14 days Orbit control: $\leq +/-500$ m		
Life time	5 years (target: 7 years)		
Launch	JFY2013, H-IIA launch vehicle		
Downlink	X-band: 800Mbps(16QAM) 400/200Mbps(QPSK) Ka-band: 278Mbps (Data Relay)		
Experimental Instrument Compact InfraRed Camera (CIRC) Space-based Automatic Identification Syste Experiment 2 (SPAISE2)			

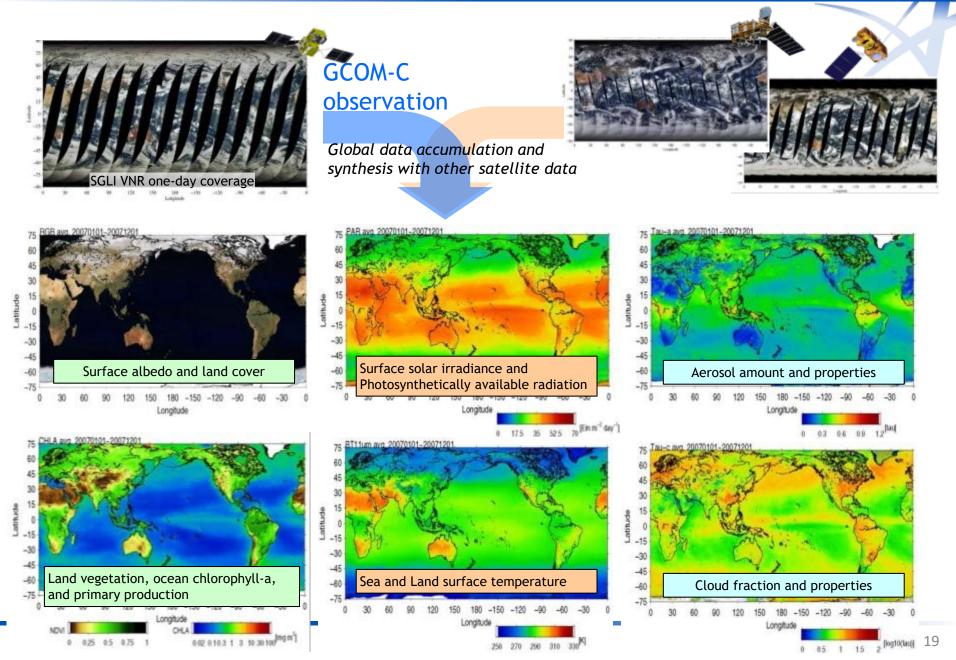
10m Global Forest/Non-Forest Map by ALOS/PALSAR

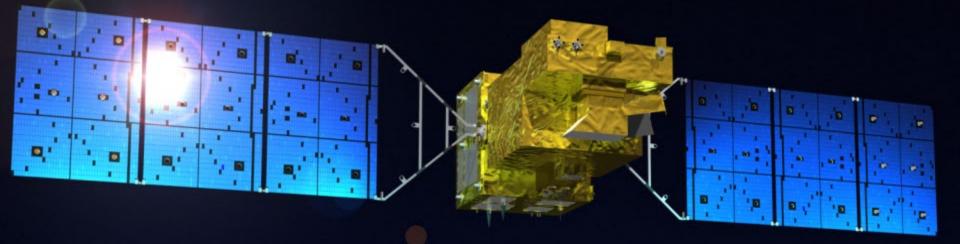
PALSAR 10m Global Forest/Non-Forest Map 2009


Forest/non-forest map is the important geophysical information on investigating the temporal forest land change, terrestrial causes on global warming, and proceeding the activity on Reducing the Emission from Deforestation and forest Degradation plus (REDD+).

©JAXA, METI Analyzed by JAXA

🕽 : Forest 😑 : Non-Forest 🌑 : Water


Upcoming Satellites


GCOM-C SGLI characteristics			
Orbit	Sun-synchronous (descending local time: 10:30),		
Orbit	Altitude: 798km, Inclination: 98.6deg		
Launch Date	JFY 2017		
Mission Life 5 years			
Coord	Push-broom electric scan (VNR: VN & P)		
Scan	Wisk-broom mechanical scan (IRS: SW & T)		
Cara dub	1150km cross track (VNR: VN & P)		
Scan width	1400km cross track (IRS: SW & T)		
Spatial resolution	250m, 500m, 1km		
Polarization 3 polarization angles for POL			
Along track tilt Nadir for VN, SW and TIR, & +/-45 deg for P			

- Multi-band Imaging Radiometer (Near UV ~ TIR)
- Polarimeter
- Tilt Observation
- 250m Global at minimum

Examples of GCOM-C SGLI Products

GOSAT-2 on orbit in early 2018

Upgrade in GOSAT-2 mission

Measurement precision

Flux estimation

Anthropogenic emission Ecosystem carbon exchange

Aerosol monitoring

0.5 ppm for CO₂ 5 ppb for CH₄

1000km for land

GOSAT achievement

 $\leftarrow 2ppm \text{ for } CO_2 \\ \leftarrow 12ppb \text{ for } CH_4 \\ \end{aligned}$

GOSAT target

 $\leftarrow 4 \text{ ppm for } \text{CO}_2 \\ \leftarrow 32 \text{ ppb for } \text{CH}_4$

←2000km in sub-continental scale

CO to distinguish emission source Chlorophyll fluorescence to place constrains on GPP

Aerosol size distribution and its property

Earth Cloud, Aerosol and Radiation Explorer (EarthCARE)

JAXA provides Cloud Profiling Radar (CPR) the world's first W-band Doppler radar (94GHz) to observe vertical structure and dynamics of clouds,.

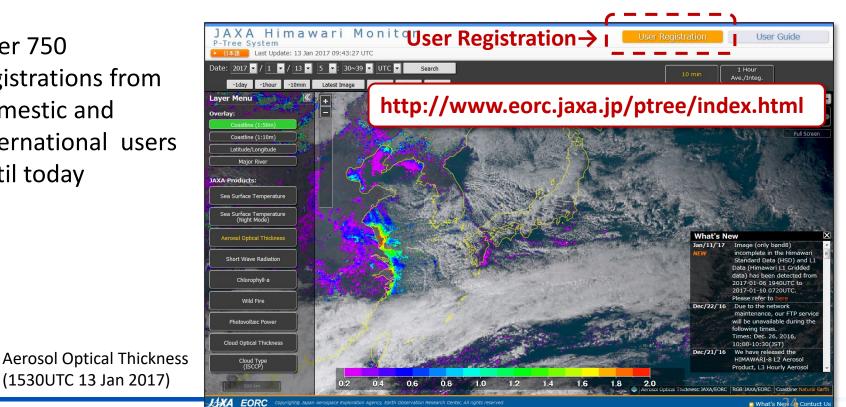

Institutions	European Space Agency (ESA), National Institute of Information and Communications Technology (NICT), Japan Aerospace Exploration Agency (JAXA)			
Launch	2018 using Soyuz or Zenit (by ESA)			
Mission Duration	3-years			
Mass	Approx. 2200kg			
Orbit	Sun-synchronous sub-recurrent orbit Altitude: approx. 400km Mean Local Solar Time (Descending): 14:00			
Repeat Cycle	25 days			
Orbit Period	5552.7 seconds			
Semi Major Axis	6771.28 km			
Eccentricity	0.001283 21			
Inclination	97.050°			

Advanced Optical and Advanced Radar

- Advanced Optical Satellite (ALOS-3)
 - Successor of ALOS/AVNIR-2 (highresolution optical imager)
 - Horizontal resolution: 0.8m (panchromatic band) and 3.2m (color band)
 - Swath width: 70km
 - Scheduled to be launched in JFY 2020
- Advanced Radar Satellite (ALOS-4)
 - Successor of ALOS-2/PALSAR2 (L-band SAR)
 - Horizontal resolution: 1x3m (spot-light mode), 3m (high-resolution mode), and 25m (wide swath mode)
 - Swath width: 35kmx35km (spot-light mode), 200km (high-resolution mode) and 700km (wide swath mode)
 - Scheduled to be launched in JFY 2020

Advanced Optical Satellite

Advanced Radar Satellite



Synergies with Himawari

JAXA Himawari Monitor

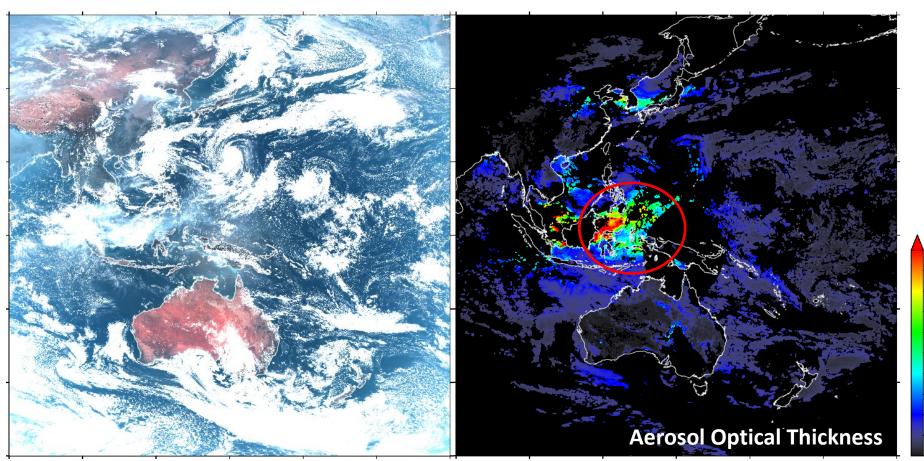
- JAXA has been developing Himawari-8 products using the retrieval algorithms which will be consistent with the upcoming Japanese earth observation missions (GCOM-C, GOSAT-2 and EarthCARE), in order to seek synergies between the satellites
- JAXA Himawari Monitor website site was opened in August 2015 to distribute Himawari original (Level 1) and geophysical (Level 2) products
- **Over 750** registrations from domestic and international users until today

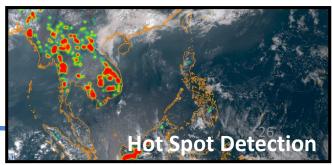
(1530UTC 13 Jan 2017)

JAXA Himawari Products

		Product name	Grid size	Interval	Format	
11	Reflecta	ance (6 bands)	500m/1km/2k	10min(full)	HSD	
L1	Brightne	ess temperature (10 bands)	m	2.5min(Japan)	NetCDF	
	Atmos-	Aerosol properties	5km	10min		
	phere	Cloud properties	5km	10min		
L2	Ocean	Sea surface temperature	2km	10min/1hr/1dy	NetCDF	
		Ocean color (Chlorophyll-a)	5km(full) 1km(Japan)	1hr		
	Land	Wild fire	-	10min	CSV	
	Flux	Photosynthetically active radiation (PAR) & Shortwave radiation (SWR)	5km(full) 1km(Japan)	1hr	NetCDF	
		Photovoltaic Power (image only)	1km/4km	10min	-	

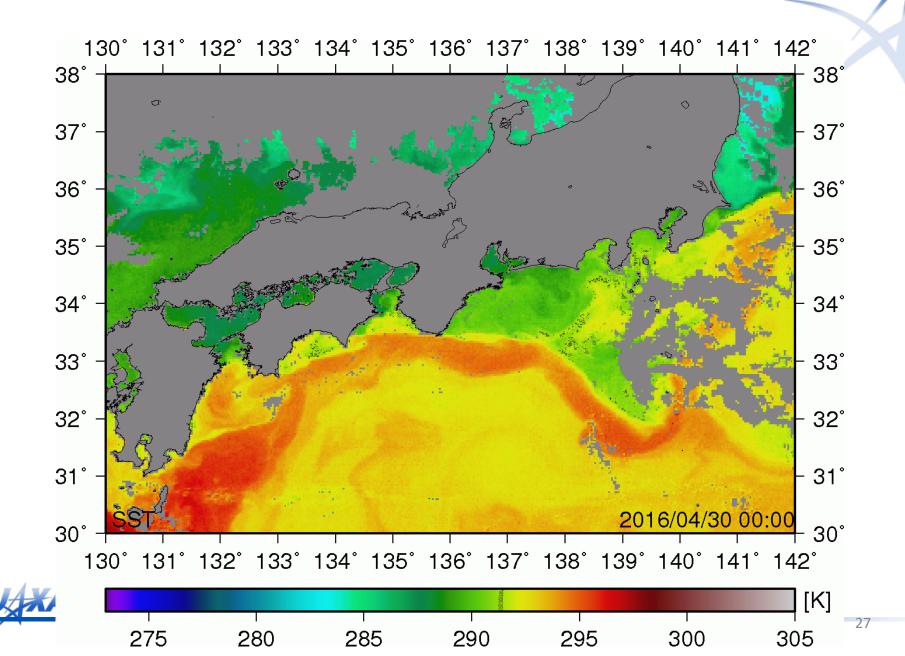
• L2 Algorithms are based on those developed for GCOM-C/SGLI. References are available at the web site.


http://www.eorc.jaxa.jp/ptree


Himawari Aerosol and Hot Spot

AOT1H H08_20151020_0230_1H_ARPbet_FLDK.02401_02401.nc

NC_H08_20151020_0230_R21_FLDK.02401_02401.nc


- JAXA EORC applied the aerosol algorithm developed for JAXA LEO missions (GCOM-C, EarthCARE, GOSAT-2) to Himawari-8
- Wild fire in Borneo Island (Indonesia), atmospheric pollutant from Chinese continent and hot spot over Southeast Asia

1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.6

0.2

Himawari SST in 10-minutes

Summary

- Current satellites
 - 4 satellite in orbit: GOSAT (2009-present) (w/ NIES, MOE), GCOM-W (2012-present),
 GPM (2014-present) (w/ NASA), ALOS-2 (2014-present)
- Upcoming satellites
 - GCOM-C in JFY 2017, GOSAT-2 in JFY 2018, and EarthCARE (w/ ESA) in JFY 2018
 - ALOS-3 (optical) and ALOS-4 (SAR) is scheduled in JFY 2020
- Himawari-8
 - Develop and distribute geophysical parameters at JAXA since August 2015
- Data distribution
 - http://www.gportal.jaxa.jp/gp/top.html (ADEOS, ADEOS-2, AMSR-E, TRMM, GPM, and future environmental satellites)
 - https://gcom-w1.jaxa.jp (AMSR, AMSR-E, GCOM-W) (transfer to G-Portal in JFY2017)
 - https://data2.gosat.nies.go.jp/index_en.html (GOSAT at NIES)
 - https://satpf.jp/spf_atl/?lang=en (ALOS, ALOS-2 at PLATFORM) (NOT FREE except PIs)
 - http://suzaku.eorc.jaxa.jp/GCOM_W/research/resdist.html (GCOM-W research)
 - https://sharaku.eorc.jaxa.jp/GSMaP (GSMaP, GSMaP_NOW)
 - http://www.eorc.jaxa.jp/ptree (Himawari data at JAXA)
 - http://kuroshio.eorc.jaxa.jp/JASMES/index.html (Sea Ice long-term data, etc.)
 - http://suzaku.eorc.jaxa.jp/GHRSST/index.html (JAXA's SST in GDS (NetCDF) format)